1,130 research outputs found

    Open Quantum Dynamics: Complete Positivity and Entanglement

    Full text link
    We review the standard treatment of open quantum systems in relation to quantum entanglement, analyzing, in particular, the behaviour of bipartite systems immersed in a same environment. We first focus upon the notion of complete positivity, a physically motivated algebraic constraint on the quantum dynamics, in relation to quantum entanglement, i.e. the existence of statistical correlations which can not be accounted for by classical probability. We then study the entanglement power of heat baths versus their decohering properties, a topic of increasing importance in the framework of the fast developing fields of quantum information, communication and computation. The presentation is self contained and, through several examples, it offers a detailed survey of the physics and of the most relevant and used techniques relative to both quantum open system dynamics and quantum entanglement.Comment: LaTex, 77 page

    Damped harmonic oscillators in the holomorphic representation

    Full text link
    Quantum dynamical semigroups are applied to the study of the time evolution of harmonic oscillators, both bosonic and fermionic. Explicit expressions for the density matrices describing the states of these systems are derived using the holomorphic representation. Bosonic and fermionic degrees of freedom are then put together to form a supersymmetric oscillator; the conditions that assure supersymmetry invariance of the corresponding dynamical equations are explicitly derived.Comment: 19 pages, plain-TeX, no figure

    Planck's scale dissipative effects in atom interferometry

    Get PDF
    Atom interferometers can be used to study phenomena leading to irreversibility and dissipation, induced by the dynamics of fundamental objects (strings and branes) at a large mass scale. Using an effective, but physically consistent description in terms of a master equation of Lindblad form, the modifications of the interferometric pattern induced by the new phenomena are analyzed in detail. We find that present experimental devices can in principle provide stringent bounds on the new effects.Comment: 12 pages, plain-Te

    Dissipative quantum metrology in manybody systems of identical particles

    Full text link
    Estimation of physical parameters is a must in almost any part of science and technology. The enhancement of the performances in this task, e.g., beating the standard classical shot-noise limit, using available physical resources is a major goal in metrology. Quantum metrology in closed systems has indicated that entanglement in such systems may be a useful resource. However, it is not yet fully understood whether in open quantum systems such enhancements may still show up. Here, we consider a dissipative (open) quantum system of identical particles in which a parameter of the open dynamics itself is to be estimated. We employ a recently-developed dissipative quantum metrology framework, and investigate whether the entanglement produced in the course of the dissipative dynamics may help the estimation task. Specifically, we show that even in a Markovian dynamics, in which states become less distinguishable in time, at small enough times entanglement generated by the dynamics may offer some advantage over the classical shot-noise limit.Comment: 9 pages, 2 figure

    Quantum measuring processes for trapped ultracold bosonic gases

    Full text link
    The standard experimental techniques usually adopted in the study of the behaviour of ultracold atoms in optical lattices involve extracting the atom density profile from absorption images of the atomic sample after trap release. Quantum mechanically this procedure is described by a generalized measure (POVM); interference patterns found in absorption images suggest a generalized measure based on fixed-phase, coherent-like states. We show that this leads to an average atomic density which differs from the usually adopted one, obtained as the expectation value of the atom density operator in the many-body state.Comment: 11 pages, LaTe

    Dissipative neutrino oscillations in randomly fluctuating matter

    Full text link
    The generalized dynamics describing the propagation of neutrinos in randomly fluctuating media is analyzed: it takes into account matter-induced, decoherence phenomena that go beyond the standard MSW effect. A widely adopted density fluctuation pattern is found to be physically untenable: a more general model needs to be instead considered, leading to flavor changing effective neutrino-matter interactions. They induce new, dissipative effects that modify the neutrino oscillation pattern in a way amenable to a direct experimental analysis.Comment: 14 pages, plain-Te

    Quantum contextuality in N-boson systems

    Get PDF
    Quantum contextuality in systems of identical bosonic particles is explicitly exhibited via the maximum violation of a suitable inequality of Clauser-Horne-Shimony-Holt type. Unlike the approaches considered so far, which make use of single-particle observables, our analysis involves collective observables constructed using multi-boson operators. An exemplifying scheme to test this violation with a quantum optical setup is also discussed.Comment: 4 pages, 1 figure, LaTe

    Dissipation and decoherence in photon interferometry

    Full text link
    The propagation of polarized photons in optical media can be effectively modeled by means of quantum dynamical semigroups. These generalized time evolutions consistently describe phenomena leading to loss of phase coherence and dissipation originating from the interaction with a large, external environment. High sensitive experiments in the laboratory can provide stringent bounds on the fundamental energy scale that characterizes these non-standard effects.Comment: 14 pages, plain-Te

    Correlations in quantum thermodynamics: Heat, work, and entropy production

    Get PDF
    We provide a characterization of energy in the form of exchanged heat and work between two interacting constituents of a closed, bipartite, correlated quantum system. By defining a binding energy we derive a consistent quantum formulation of the first law of thermodynamics, in which the role of correlations becomes evident, and this formulation reduces to the standard classical picture in relevant systems. We next discuss the emergence of the second law of thermodynamics under certain---but fairly general---conditions such as the Markovian assumption. We illustrate the role of correlations and interactions in thermodynamics through two examples.Comment: 16 page
    • …
    corecore